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Abstract

The cavity of a supercavitating vehicle in water is maintained by the steady injection of gas from sources within the

vehicle and cavity. An analysis is made in this paper to estimate the spectrum of the acoustic ‘self-noise’ produced at the

nose of the vehicle by the unsteady impingement of the gas on the cavity interface. For the purposes of calculation it is

assumed that the supercavity is circular cylindrical and is formed to the rear of a hemispherical cavitator. This arrangement

closely approximates a supercavity being investigated experimentally at the Penn State Applied Research Laboratory.

A ‘transfer function’ is derived for this configuration that relates the self-noise pressure at the nose to the pressure

distribution on the cavity wall attributable to the impinging gas. It is applicable also to any geometrically similar

supercavity maintained by gas injection, provided that the distribution on the interface of the surface pressure spectrum of

fluctuations produced by the impinging gas is known. Numerical results are given using experimental data for the cavity

wall surface pressure produced by a narrow, impinging air jet and when the nose is acoustically hard, but the method is

easily modified to deal with more general impedance conditions on the cavitator.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A supercavitating underwater vehicle attains high forward speeds because of the great reduction in the drag
obtained by enclosing most of the length of the vehicle within a ventilated supercavity. The cavity is formed at a
‘cavitator’ near the vehicle nose [1–3], and maintained in a stable form by the carefully controlled injection of
gas from sources near the cavitator [4,5]. Vehicle guidance may be achieved by the use of high-frequency
acoustic sensors situated within the nose. Turbulence and instabilities of the gas–water interface are sources of
unwanted ‘hydrodynamic sound’ [6–11] that can interfere with the operation of these sensors. However, an
important additional contribution to this noise has been attributed to the direct impingement of the ventilating
gas (delivered at relatively high speed from inlet nozzles) on the cavity interface [12–14].

The production of sound by gas-jet impingement on the interface has been examined experimentally at the
Applied Research Laboratory (ARL) of Penn State University using the supercavitating vehicle model
illustrated schematically in Fig. 1. The ventilating gas enters the cavity axisymmetrically through 20 radially
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of the ARL experimental supercavity.

Fig. 2. Supercavity model with a hemispherical cavitator of radius a used to estimate the sound pressure produced at the nose N by the

impingement of ventilating gas on the gas–water interface with surface pressure pvðx;oÞ.
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orientated nozzles equally spaced circumferentially on a ‘gas injector ring’ just aft of the cavitator. In this
arrangement the jet impingement velocity on the interface is typically �50m=s at close to normal incidence.
The destruction of jet momentum at the interface results in the production of sound in the water of dipole type,
the dipole axis being in the direction of the local interface normal. Each jet is turbulent and produces broad-
spectrum sound that tends to radiate directly away from the interface at high frequencies [13,14]. Direct
radiation towards the nose is inhibited by the fact that, for water-borne sound, the interface may in a first
approximation be regarded as a pressure release surface.

However, it is important to be able to quantify the influence of these jet dipoles (and other surface related
sound sources) on the sound measured at the vehicle nose. The purpose of this paper is to provide analytical
estimates of this in the form of a frequency dependent transfer function. This can be done with relative ease and
to a sufficient approximation for the simplified geometry shown in Fig. 2, where the nose shape is assumed to
be a hemisphere and the cavity interface is replaced by a circular cylinder of the same radius as the nose.
Approximate formulae for the sound level at the nose will be developed at high, low and intermediate
frequencies. The calculations must take explicit account of nose diffraction at high frequencies, and in all cases
account must also be taken of the surface ‘hard/pressure-release’ transition that occurs at the trailing edge of
the cavitator.

The mathematical problem is formulated in Section 2. The diffraction formulae at high and low frequencies
are obtained in Sections 3 and 4. These are used in Section 5 to derive a composite estimate of the transfer
function over all relevant frequencies. Early test data taken from the literature for a single impinging gas jet
are used to make a sample prediction of the self-noise at the nose.

2. Representation of the self-noise at the nose

The undisturbed position of the gas–water interface (SC in Fig. 2) is assumed to coincide with a circular
cylinder coaxial with the positive x-axis and of radius r ¼ a, where the coordinate origin is taken at the
midpoint O of the rear, plane face of the idealized hemispherical cavitator. The water has density ro and sound
speed co, and the Mach number of the relative mean flow of water over the supercavity is sufficiently small that
the convection of sound can be ignored. Therefore, when contributions from extraneous turbulence noise
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sources within the water are neglected, small amplitude pressure fluctuations pðx;oÞ e�iot of radian frequency
o (where t denotes time) propagate within the water according to [6–11]

ðr2 þ k2
oÞp ¼ 0, (1)

where ko ¼ o=co is the acoustic wavenumber. The visco-thermal dissipation of the sound is ignored, so that
the condition of impermeability implies that qp=qxn ¼ 0 on the surface SN of the cavitator, where xn denotes a
local normal coordinate directed into the water.

We consider the sound generated in the water by the impingement of ventilating gas on the cavity wall SC.
This produces a distributed fluctuating surface pressure pvðx;oÞ on the interior face of the interface that is
acoustically equivalent to a distribution of dipole sources radiating into the water. It is assumed that pvðx;oÞ is
known from measurement or from previous numerical simulation. Because of the very large differences in the
mean gas and water densities it is also assumed in a first approximation that the pressure p vanishes elsewhere
on the cavity interface.

Let pNðoÞ denote the unsteady pressure produced by this mechanism on the hemispherical surface SN of the
cavitator at the nose, i.e. at the point of intersection of the negative x-axis and SN. It is expressed in terms of
pvðx;oÞ by introducing a Green’s function Gðx;oÞ that is the solution with outgoing wave behaviour of

ðr2 þ k2
oÞG ¼ 0 (2)

in the water, subject to

qG=qxn ¼ dðyÞdðzÞ on SN

G ¼ 0 on SC

)
, (3)

where the coordinates y; z are defined such that x ¼ ðx; y; zÞ forms a conventional rectangular, right-handed
system. It is clear that this definition implies that G is axisymmetric with respect to the axis of the supercavity,
i.e. that G � Gðx; r;oÞ where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
.

The application of Green’s theorem and the radiation condition to Eqs. (1), (2) yields [10,15–17]I
SNþSC

pðx;oÞ
qG

qxn

ðx;oÞ � Gðx;oÞ
qp

qxn

ðx;oÞ
� �

dS ¼ 0, (4)

where the integration is over the combined surfaces SN þ SC of the cavitator and the cavity interface. The
second term in the integrand vanishes identically, because qp=qxn ¼ 0 on SN and G ¼ 0 on SC. The condition
that p � pv on SC and the first of conditions (3) then supply

pNðoÞ ¼
Z

S

pvðx;oÞTðx;oÞdS, (5)

where the integration is over the impingement region S, say, of the cavity interface, and where

Tðx;oÞ � �
qG

qr
ðx; r;oÞ

� �
r¼a

. (6)

The determination of the ‘self-noise’ is accordingly reduced to the resolution of the reciprocal problem of
finding the frequency dependence of the (axisymmetric) transfer function Tðx;oÞ on SC at distance x from the
edge of the cavitator. It is clear that this function must be axisymmetric and dependent only on the distance x

from the cavitator; indeed symmetry demands that the pressure produced at the nose by a pressure loading
pvðx;oÞ applied at a point on SC can depend only on the axial distance x and not on the azimuthal location of
the point of application.

3. The transfer function at high frequencies

At very high frequencies, such that koab1, the impingement region S on the cavity interface lies in the
‘acoustic shadow’ of the direct radiation from the point source at the nose (Fig. 3). The asymptotic behaviour
of the Green’s function in this shadow region will be estimated by surface wave diffraction theory (see, e.g.
Refs. [18–26]). This is done in two stages. First, we calculate the surface diffracted waves propagating over the
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Fig. 3. Configuration used to calculate the transfer function from the solution of the wave equation representing the motion produced in

the water by a unit point source at the nose.
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hemispherical cavitator and incident on the edge A. Second, the secondary diffraction of these waves at the
edge A is calculated.

3.1. Surface diffracted waves

The surface diffraction of high-frequency waves from the source leads to a well known representation in
terms of ‘creeping modes’ and it is only necessary to give here a minimum of details necessary for the present
discussion.

Temporarily take the origin at the source. The source field is axisymmetric, and the mathematical
description of high-frequency propagation near the surface of the cavitator can then be simplified by
introduction of local coordinates ðxn;$Þ, where xn denotes distance in the normal direction from the cavitator
into the fluid, and $ denotes curvilinear distance measured on the surface from the source along a ‘great
circle’. Green’s function can depend only on xn;$, because the motion is axisymmetric. At high frequencies
and close to the surface where xn5a, we write G � GN, where GN may be taken to satisfy the following ‘earth
flattening’ approximation to the wave equation [20–25]

q2

qx2
n

þ 1�
2xn

a

� �
1

$

q
q$

$
q
q$

� �
þ k2

o

� �
GN ¼ 0, (7)

where

qGN

qxn

¼
1

2p$
dð$Þ at xn ¼ 0. (8)

To solve Eq. (7), we put

GNðxn;$Þ ¼ 2p
Z 1
0

ĜNðxn; kÞkJ0ðk$Þdk, (9)

where J0 is the Bessel function of zero order. Then [27]

q2ĜN

qx2
n

þ
2k2

a
xn þ

a

2

k2
o

k2
� 1

� �� �
ĜN ¼ 0; xn40 where

qĜN

qxn

¼
1

ð2pÞ2
; xn ¼ 0. (10)

The solution with outgoing wave behaviour is [24,25]

ĜNðxn; kÞ ¼

eip=3Ai
2k2

a

� �1=3

e�ip=3 xn þ
a

2

k2
o

k2
� 1

� �� �( )

ð2pÞ2
2k2

a

� �1=3

Ai0
ka

2

� �2=3

e�ip=3
k2

o

k2
� 1

� �( ) , (11)

where Ai denotes the Airy function [28] and the prime denotes differentiation with respect to the argument.
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Putting xn ¼ 0 on the surface, we then find from Eq. (9) that

GNð0;$Þ ¼
eip=3

2p

Z 1
0

kJ0ðk$ÞAi e�ip=3
ka

2

� �2=3
k2

o

k2
� 1

� �( )
dk

2k2

a

� �1=3

Ai0 e�ip=3
ka

2

� �2=3
k2

o

k2
� 1

� �( ) . (12)

When koab1 the Bessel function may be replaced by its large argument approximation
(J0ðxÞ�ð2=pxÞ1=2 cosðx� p=4Þ [28]), and the range of integration extended to �1oko1, to give

GNð0;$Þ �
eip=3

ð2pÞ3=2
ffiffiffiffi
$
p

Z 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
k þ i�
p

Ai e�ip=3
jkja

2

� �2=3
k2

o

k2
� 1

� �( )
eiðk$�ðp=4ÞÞ dk

2jkj2

a

� �1=3

Ai0 e�ip=3
jkja

2

� �2=3
k2

o

k2
� 1

� �( ) , (13)

where �!þ0 and jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ �2

p
, with the branch cuts for

ffiffiffiffiffiffiffiffiffiffiffiffi
k � i�
p

taken, respectively, from �i� to �i1 in
the k-plane.

As ko$!1 the main contribution to the integral is from the residues of poles in the upper k-plane.
These poles are determined by the zeros x ¼ �sn; n ¼ 1; 2; 3; . . . of Ai0ðxÞ, which are real and negative and
given by [28]

s1 ¼ 1:01879; s2 ¼ 3:24820; s3 ¼ 4:82010; sn ¼
3p
8
ð4n� 3Þ

� �2=3
; n43. (14)

Each sn determines a corresponding pole kn; the functional dependencies of the real and imaginary parts of

kn=ko on koa=s3=2n are plotted in Fig. 4 (———). It is seen that ReðknÞ�ko when koa=s3=2n exceeds about 2; it

decreases to zero at koa=s3=2n ¼ 4=3
ffiffiffi
3
p
�0:77, below which ReðknÞ � 0, and Imðkn=koÞ increases rapidly to þ1

(from Imðkn=koÞ ¼
ffiffiffi
2
p

at koa=s3=2n ¼ 4=3
ffiffiffi
3
p

). Also shown in the figure (– – –) are the asymptotic dependencies
for koab1, given by

kn�ko 1þ
sn

2

2

koa

� �2=3

eip=3

" #
. (15)
Fig. 4. Dependence on koa=s3=2n of the real and imaginary parts (———) of the pole kn=ko of the integrand (13); (– – –) the asymptotic

approximation (15).
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In terms of these quantities we obtain from Eq. (13) (using the relation Ai00ðxÞ ¼ xAiðxÞ)

GNð0;$Þ �
3e11ip=12

22=3
ffiffiffiffiffiffiffiffiffiffiffiffi
2p$a
p

X
n

ðknaÞ1=6eikn$

sn

2k2
o

k2
n

þ 1

 ! ; koab1. (16)

This formula is to be used to determine the creeping wave approximation to the waves incident on the edge
A of the cavitator, where $ ¼ pa=2. However, Pekeris [20] has shown that the accuracy of the earth-flattening

approximation (7) degrades rapidly when $ exceeds about 1
2

a. The complex phase kn$ is well predicted, but

the amplitude factor 1=
ffiffiffiffi
$
p

overestimates the decrease in creeping wave amplitude with distance over the
surface of the hemisphere.

This defect is corrected by appeal to the geometrical theory of diffraction [23,25], according to which the
creeping wave amplitude is inversely proportional to the square root of the (circumferential) length L of the
wavefront on SN. Now L ¼ 2prð$Þ, where rð$Þ is the radial distance to SN indicated in Fig. 3 from the axis of
symmetry. Therefore, because $ � rð$Þ when $=a is small, the appropriate correction is obtained by
replacing $ in the denominator of the right-hand side of Eq. (16) by rð$Þ, yielding

GNð0;$Þ �
3e11ip=12

22=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2parð$Þ

p X
n

ðknaÞ1=6eikn$

sn

2k2
o

k2
n

þ 1

 ! ; koab1. (17)

3.2. Diffraction at the edge of the cavitator

The creeping surface wave (17) is diffracted further at the edge A of the cavitator, across which the surface
condition changes from qG=qxn ¼ 0 to G ¼ 0. Near the edge A (rð$Þ ! a) the wave GNð0;$Þ consists of a
slowly varying amplitude� eiko$. The cavity interface r ¼ a is the tangential, circular cylindrical continuation
of the circular edge A, parallel to the x-axis. To calculate the edge diffraction we replace the cavitator by a
rigid upstream continuation of this cylinder (indicated by the broken lines in Fig. 3). We then regard the
creeping wave (17) as being incident on A from along this rigid cylinder, and put

GNð0;$Þ ¼ GI e
ikox, (18)

where

GI ¼
3e11ip=12

22=3
ffiffiffiffiffiffi
2p
p

a

X
n

ðknaÞ1=6 eikn‘

sn

2k2
o

k2
n

þ 1

 ! ; ‘ ¼
pa

2
. (19)

Then, if GS denotes the edge diffracted component of G we can write in the region r4a

G ¼ GI e
ikox þ GSðx; rÞ, (20)

wherein for some suitable AðkÞ we can put [10,17,29]

GSðx; rÞ ¼

Z 1
�1

AðkÞH
ð1Þ
0 ðgrÞ eikx dk, (21)

where H
ð1Þ
0 is the zero order Hankel function and g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

o � k2
q

, with branch cuts in the k-plane extending

from k ¼ �ðko þ i0Þ to �i1, so that g is positive imaginary on the real axis when jkj4ko.
The kernel function AðkÞ is determined from the conditions

qG

qr
¼ 0; xo0

G ¼ 0; x40

9=
;; r ¼ aþ 0, (22)
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which supply the following dual integral equations satisfied by AðkÞ:Z 1
�1

gAðkÞH ð1Þ1 ðgaÞ eikx dk ¼ 0; xo0, (23)

Z 1
�1

AðkÞH
ð1Þ
0 ðgaÞ þ

GI

2piðk � ko � i0Þ

� �
eikx dk ¼ 0; x40. (24)

In these integrals the Hankel functions H
ð1Þ
0 ;H

ð1Þ
1 may be replaced by their large argument approximations [28]

when koab1. The equations are then readily solved by the Wiener–Hopf procedure, yielding for the solution G

that remains finite at A

Gðx; rÞ � GI eikox þ
i

p

ffiffiffiffiffiffiffi
koa

2r

r Z 1
�1

eifkxþgðr�aÞg dkffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þ k
p

ðk � ko � i0Þ

 !
; koab1 (25)

(see [29,30] for details).
Hence, at distance x40 from the cavitator edge A on the cavity interface

qG

qr
� GI

ffiffiffiffiffiffiffi
2ko

px

r
eiðkox�p=4Þ; koab1. (26)

Using formula (19) and definition (6), this provides the following explicit formula for the transfer function:

Tðx;oÞ � �
1

22=3pa2

ffiffiffiffiffiffiffiffi
koa

x=a

s
3
X

n

ðknaÞ1=6 eik
0
n‘

sn

2k2
o

k2
n

þ 1

 !
0
BBBB@

1
CCCCAeiðkoð‘þxÞþ2p=3Þ; koab1, (27)

where k0n ¼ kn � ko.
4. The transfer function at low and intermediate frequencies

4.1. The hydrodynamic approximation

The behaviour of Tðx;oÞ at very low frequencies is determined by the solution of Eqs. (3) and (4) in the
hydrodynamic limit in which koa! 0. An understanding of this limiting behaviour (when the local flow
produced by the source at N resembles that of an incompressible fluid) is useful for mapping out the properties
of the transfer function over the whole frequency range, and not just in the high-frequency approximation of
Section 3. The precise geometry of the nose should not be important in this limit — the important aspect of the
problem is contained in the coupling in incompressible flow of the source flow at N with a neighbouring
‘pressure release’ interface.

A highly simplified model of this situation is illustrated in Fig. 5. Here the cavitator nose has been ‘flattened’
into a rigid circular disc of radius ‘ in the plane xn ¼ 0, and the cavity interface has been deformed into the
infinite region of this plane in $4‘. Green’s function satisfies

q2

qx2
n

þ
1

$

q
q$

$
q
q$

� �� �
G ¼ 0; xn40 (28)

with

qG

qxn

¼
1

2p$
dð$Þ; $o‘

G ¼ 0; $4‘

9=
;; xn ¼ 0. (29)
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Fig. 5. Sketch of the geometrically ‘flattened’ analytical model used to estimate the magnitude of the transfer function Tðx;oÞ in the low-

frequency, hydrodynamic limit koa! 0.
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This is a standard problem of classical potential theory [31] which is solved by setting

Gðxn;$Þ ¼

Z 1
0

BðkÞJ0ðk$Þ e
�kxn dk, (30)

where BðkÞ satisfies the dual systemZ 1
0

kBðkÞJ0ðk$Þdk ¼ �
1

2p$
dð$Þ; $o‘, (31)

Z 1
0

BðkÞJ0ðk$Þdk ¼ 0; $4‘. (32)

The solution is given by Sneddon ([31, Section 3.5]) in the form

BðkÞ ¼ �
1

p2

Z 1

0

sinðk‘xÞ
x

dx. (33)

This is now used to evaluate the normal derivative qG=qr � �Tðx;oÞ of Eq. (6). In the present deformed
geometry the normal derivative corresponds to qG=qxn, and we readily determine the low-frequency
approximation of this derivative by the substitution of Eq. (33) into Eq. (30), which gives

Tðx;oÞ�
‘

p2ð‘ þ xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2‘ þ xÞ

p ; koa! 0. (34)
4.2. Approximation for intermediate frequencies

Some idea of the behaviour of the transfer function when koa�Oð1Þ can be obtained by combining the
hydrodynamic approximation of Section 4.1 and the doubly infinite edge diffraction model of Fig. 3.

When the edge of the ‘flattened’ nose of Fig. 5 is ignored, the surface potential GN produced by the point
source at N is given by

GNð0;$Þ ¼ �
eiko$

2p$
. (35)

We shall take this to represent the field incident on the edge A of the hemispherical cavitator when koa�Oð1Þ,
but is too small to justify the use of the creeping wave approximation. The method of Section 3.2 may then be
used to determine the influence of diffraction on the incident wave (35) by setting

GI ¼ �
eiko‘

2p‘
(36)

in Eq. (18).
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Then (26) yields

Tðx;oÞ� �
1

21=2p3=2‘

ffiffiffiffiffi
ko

x

r
eiðkoð‘þxÞ�ðp=4ÞÞ; koa�Oð1Þ. (37)
5. Numerical results

5.1. The transfer function

The transfer function Tðx;oÞ determines the strength of the self-noise at the nose N in terms of the
distributed pressure field pv of the impinging ventilating gas, in accordance with Eq. (5). To illustrate its
frequency dependence we shall consider the non-dimensional quantity a2jTðx;oÞj.

At high frequencies this is governed by the creeping wave approximation (27). In that formula ‘ ¼ ðp=2Þa.
Now it is readily verified from Eq. (14) and the results displayed in Fig. 4, that only the first term in the residue
expansion in terms of the poles kn is important for koaX1. For example, the ratio of the absolute values of the
second to the first term in the expansion decreases rapidly from �0:03 when koa increases from koa ¼ 1.

For koa41 we shall therefore take

a2jTðx;oÞj �
3

22=3p

ffiffiffi
a

x

r
ðkoaÞ1=2

ðk1aÞ1=6 eik
0
1ðp=2Þa

s1
2k2

o

k2
1

þ 1

 !
����������

����������
. (38)

This approximation is plotted as the ‘creeping wave’ curve in Fig. 6 for x ¼ 2a, i.e. at one cavity diameter
downstream of the edge A of the cavitator. The straight line labelled ‘flat nose’ also plotted in the figure
represents the corresponding low-frequency prediction from formula (37), which would arguably be expected
to furnish an over estimate of the actual level at the nose. It seems reasonable, therefore, to connect these high-
and low-frequency limiting behaviours by means of the smooth, broken-line interpolating curve shown in the
figure. The level of the predicted ‘hydrodynamic limit’ (koa ¼ 0) is also indicated in the figure. It is evidently
attained in practice only at very low frequencies.

Fig. 7 shows how the acoustic levels are only marginally decreased when x ¼ 4a. The hydrodynamic level is
reduced by about 17 dB, because of the relative rapid fall-off with distance of hydrodynamic motions
interacting with the cavitator edge and the cavity interface.
Fig. 6. The creeping wave and low-frequency (‘flat nose’) approximations (———) for 20 log10ða
2jT jÞ (dB) at x ¼ 2a; the broken line curve

represents a possible interpolation between these limits.
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Fig. 8. (a) Sound generation by a jet impinging on the gas–water interface SC. (b) Stagnation point wall pressure spectrum (———)

measured by Strong et al. [32] for a turbulent air jet of mean density ro impinging at normal incidence on a plane wall. The jet exhausts at

speed U ¼ 136 ft=s from a round nozzle of diameter D ¼ 1
3
ft; the nozzle exit plane is distance 7D from the wall. (– – –) wall pressure

spectrum at an offset of 1:1D from the jet centreline.

Fig. 7. The creeping wave and low-frequency (‘flat nose’) approximations (———) for 20 log10ða
2jT jÞ (dB) at x ¼ 4a; the broken line curve

represents a possible interpolation between these limits.
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5.2. Self-noise produced by an impinging gas jet

A practical illustration of the level of the predicted self-noise at the nose can be gained by considering the
sound generated by the normal impingement on the cavity wall SC of an unsteady circular gas jet. If the jet
radius is small compared to the acoustic wavelengths of interest, the impact of the jet with the interface is
dynamically equivalent to the application of a radial surface force F ðoÞ (in the direction of increasing r) at a
point on the interface, and Eq. (5) then reduces to

pNðoÞ ¼ Tðx;oÞF ðoÞ, (39)

where x denotes the distance from the cavitator edge of the point of intersection of the interface and the jet
axis (Fig. 8a).
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Fig. 9. The predicted self-noise nose pressure spectrum 10 log10fFNðoÞ= 1
4
r2oU3Dg calculated from Eq. (39), attributable to an air jet

exhausting at speed U ¼ 40m=s from a round nozzle of diameter D ¼ 1:6mm at distance 7D from the cavity interface when

x ¼ 2a; a ¼ 30mm, and when the jet stagnation point pressure spectrum FJðoÞ corresponds to that measured by Strong et al. [32]. The case

of a cavitator with a rc-nose is discussed in Section 6.
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Because of the large density difference between the cavity interior gas and the water, Foley et al. [14] argued
that the overall jet normal force F ðoÞ could be identified with the force that would be exerted on the interface
when the latter is assumed to be rigid. Small scale turbulence in the water produced by the impact can exert no
additional net force on the interface, and its accumulation in the vicinity of the jet impingement zone is, in any
event, inhibited because it is swept downstream in the hydrodynamic mean flow. Therefore, in a first
approximation measurements of the surface force produced by a jet impinging on a rigid wall can be used to
estimate the self-noise at the nose.

The solid curve in Fig. 8b represents the wall pressure spectrum FJðoÞ measured by Strong et al. [32] on the
centreline of a round air jet impinging normally on a plane wall. The jet exhausts at speed U ¼ 136 ft=s from a
nozzle of diameter D ¼ 1

3
ft whose exit plane is distance 7D from the wall; the centreline of the jet meets the

wall at a stagnation point. To determine the net normal force it is necessary to know the correlation properties
of the surface pressure across the impact region. This data is not available in the published measurements.
However, also shown in Fig. 8b (– – –) is the wall pressure spectrum measured at a radial offset of 1:1D from
the stagnation point. The differences between the spectra in the important higher range of frequencies
(oD=U42) are sufficiently small to justify the assumption that the force pressure spectrum (which is
proportional to jF ðoÞj2) can be approximated by A2

JFJðoÞ, where AJ � ðp=4Þd
2 is an effective impact area of

the jet of diameter d.
Eq. (39) then implies that the pressure spectrum at the nose FNðoÞ, say, is given by

FNðoÞ ¼A2
J jTðx;oÞj

2FJðoÞ, (40)

when the jet nozzle-interface distance �7D. If we assume that the jet diverges conically with a total angular
width of �25	 [16], it follows that d�Dþ 3D.

The corresponding prediction of the nose pressure spectrum FNðoÞ produced by a single jet is plotted in
Fig. 9 (the curve labelled ‘hard nose’) for D ¼ 0:0625 in �1:6mm, d ¼ 6:4mm, when U ¼ 40m=s and for a
supercavity of radius a ¼ 30mm. Over the broad range of central frequencies (1okoao102) the transfer
function varies by only a few dB from its maximum near koa�8. Therefore the shape of the nose pressure
spectrum is similar to the stagnation point pressure spectrum (also shown in the figure), slightly depressed by a
few dB at the frequency extremes but otherwise uniformly smaller by about 50 dB. The overall level of the nose
pressure spectrum would be raised uniformly by 10 log10N dB in the more general case involving an array of N

mutually independent turbulent jets impinging on the cavity interface.
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6. Conclusion

The approximate representation of the transfer function derived in this paper determines directly the level of
self-noise at the cavitator nose produced by ventilating gas impinging on the gas–water, supercavity interface.
This can be used to provide a complete estimate of the noise produced by the annular array of jets used to
maintain the specially constructed ARL experimental supercavity discussed in Section 1. To do this it will first
be necessary to determine the spectra of the cavity wall impact forces produced by the jets, in a first
approximation by the method of Section 5.2, where the force is assumed to be the same as that produced by
impingement on a rigid wall. This procedure should be adequate provided the jet diameter at impact is smaller
than the smallest acoustic wavelength of interest, otherwise it will be necessary to measure the detailed
properties of the impinging pressure field across the jet at the interface.

The detailed formulae given in this paper are for the particular case of an acoustically hard nose. Similar
results are easily obtained by the same method with minor changes in the formalisms when the surface motions
satisfy a general impedance boundary condition [21–26]. For example, the curve in Fig. 9 labelled ‘rc-nose’
illustrates the large reductions in the predicted self-noise that are achieved when the hemispherical cavitator is
compliant, the case shown being for a locally reacting surface with impedance equal to roco.
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